Total No. of Questions-8]

Seat No.	

[Total No. of Printed Pages-4
[5668]-201
S.E. (Information Technology) (Third Semester) EXAMINATION, 2019

DISCRETE STRUCTURES
(2015 PATTERN)
Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Solve Q. Nos. 1 or 2, 3 or 4, 5 or 6, 7 or 8.
(ii) Neat diagrams must be drawn wherever necessary.
(iii) Figures to the right indicate full marks.
(iv) Assume suitable data, if necessary,

1. (a) A bag contains 3 red, 6 white and 7 blue balls. What is the probability that two balls drawn are white and blue ? [6]
(b) Three cards are drawn from a well-shuffled pack of 52 cards. Find the probpdity that they are a king, a queen and a jack.[6] Or
2. (a) How mhy 3-digit numbers can be formed from the digits 2, 3 , 50,7 and 9 , which are divisible by 5 and none of the digits is repeated ?
(b) What is Multiset ? Let A and B be the multisets $\{\mathrm{a}, \mathrm{a}, \mathrm{b}$, $b, c, f\}$ and $\leqslant\{a, a, b, b, b, d, d\}$, respectively.
Find :
(a) $\mathrm{A} \quad \mathrm{B}$
(b) $\mathrm{A} \quad \mathrm{B}$
(c) $\mathrm{A}-\mathrm{B}$
(d) $\mathrm{B}-\mathrm{A}$.
3. (a) Prove by Mathematical Induction that for $\mathrm{n}>=1$:
$1.1!+2.2!+3.3!+. \ldots+n . n!=(n+1)!1$.
(b) Define with example :
(i) Equivalence relation
(ii) POSET
(iii) Lattice.

Or
4. (a) Solve the following recurrence relation :
[6] $x(\mathrm{n})-6 \mathrm{x}(\mathrm{n}-1)+9 \mathrm{x}(\mathrm{n}-2)=0$
$x(0)=0$
$x(1)=3$.
(b) Consider the graph given in the figure, find the set $\mathrm{V}(\mathrm{G})$ of the vertices's present in G and that set $E(G)$ of edges of G also find the degree of each vertex and show that sum of the degree ore vertices's is twice the number of edges in graph

5. (a) Build a binary search tree for the wordsbanana peach, apple, pear, coconu,t mango and papaya using alphabetical order. Write sequence of visiting words in preorder and post-order traversal.
[7]
(b) Determine the order in which a preorder, postorder and inorder traversal visits the vertices of the given ordered rooted tree.

6. (a) What is expression tree ?

Represent the expressions
(i)

(ii)

$$
\begin{equation*}
x+\operatorname{tg}((x y+x) / y) \tag{7}
\end{equation*}
$$

usin binary trees. Write each of these expressions in :
(a) prefix notation.
(b) postfix notation.
(b) For the following set of characters, construct Huffman code.

Find average bit length of the code :

Character	A	B	C	D	E
Frequency	0.1	0.15	0.25	0.2	0.3

7. (a) Let $\mathrm{G}=\{$ even, odd\} and binary operation \oplus be define as :

Θ	even	odd
even	even	odd
odd	odd	even

Show that (G, \oplus) is a group.
(b) Define the following :
(a) Group
(b) Monoid
(c) Abelian group.

Or
8. (a) Show that $\left(G,{ }_{8}\right)$ is an abelian group where $G=\{0,1,2$, $3,4,5,6,7\}$.
(b) Prove that $\mathrm{G}=\{0,1,2,3,4,5\}=\mathrm{Z}_{6}$ is an abelian group of order 6 with respect to addition modulo 6 .

